
Electron on an arbitrary surface of revolution in a magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 1507

(http://iopscience.iop.org/0305-4470/32/8/016)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 1507–1514. Printed in the UK PII: S0305-4470(99)95841-9

Electron on an arbitrary surface of revolution in a magnetic
field

P Malits and I D Vagner
Grenoble High Magnetic Field Laboratory, Max-Planck-Institut für Festk̈orperforschung and
Centre Nationale de la Recherche Scientifique, BP 166, 38042 Grenoble Cedex 09, France
and
PERI, Physics and Engineering Research Institute, School of Engineering at Ruppin IHE,
Coventry University Programme in Israel, Emek Hefer, 40250, Israel

Received 13 July 1998, in final form 25 November 1998

Abstract. The energy spectrum of an electron confined to a mesoscopic surface of revolution in
an external magnetic field, parallel to the symmetry axis, is studied analytically. Via conformal
mapping the problem is reduced to the problem on the surface of a sphere. Cases of the sphere
and the spheroid are considered in detail and the dependence on parameters is discussed. In the
high magnetic field limit we observe a Landau level-like regular structure of the electron energy
spectrum.

1. Introduction

The quantum mechanics of non-interacting electrons in a magnetic field is a rich subject
both mathematically and physically. Initially attention was attracted to the problem of an
electron in a parabolic potential [1] and on the infinite plane [2, 3]. Later the solutions for an
electron in mesoscopic rings and cylinders [4, 5] were studied, motivating the observation [6]
of the topologically nontrivial Aharonov–Bohm [7, 8] like effects. The electron spectrum in
an oval-shaped stadium was studied in [9] and it was shown there that this model is relevant
to the notion of chaos in the level statistics and related thermodynamics of such systems. The
energy spectrum of the two-dimensional interacting electrons under a strong magnetic field was
obtained in [10, 11], and generalized for the case when a one-dimensional periodic potential
is applied in [12, 13].

Recently, there has been growing interest in electrons confined to a three-dimensional
surface with a magnetic field applied along one of the symmetry axes. The case of a sphere
was studied in [14, 15]. The energy spectrum was calculated there and the thermodynamic
properties, such as magnetization and susceptibility were studied. Real systems rarely have
a purely spherical shape, and it is desirable to know the electron spectrum for a surface of
more general shapes. Here we consider an electron on an arbitrary surface of revolution
placed in a uniform magnetic field. Our goal is to investigate the influence of the geometrical
characteristics on the quantum-mechanical spectrum of the electron.

Consider the case of a single electron confined to the surfacer = f (z), where(r, ϕ, z) are
the cylindrical coordinates. We assume the surface to be smooth, closed and to cross thez-axis
only at two pointsz = zk, k = 1, 2. The uniform magnetic fieldB points in thez-direction.

0305-4470/99/081507+08$19.50 © 1999 IOP Publishing Ltd 1507
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The problem is described by the Hamiltonian

H = 1

2m

[
ih̄∇ − e

c
A

]2

+ V (1)

where, for simplicity, we ignore spin-dependent terms.A = B(−y, x,0)/2 is the vector
potential in the symmetric gauge [3],(x, y) are the Cartesian coordinates. This Hamiltonian
leads to the following Schrödinger equation on the surface:(

1 + 2iB1
∂

∂ϕ
− B2

1r
2 − V1

)
ψ = −E1ψ (2)

whereE1 =
(
2m/h̄2

)
E, B1 = eB/2ch̄, V1 =

(
2m/h̄2

)
V .

We introduce new orthogonal coordinates byz + ir = F(u + iv), where the function
F(u + iv)maps conformally the domain of the(u, v)-plane containing the unit circle onto the
domain of the(r, z)-plane containing the closed curver = ±f (z) and this curve is the image
of the circleu2 + v2 = 1 with the arcv > 0 corresponding tor > 0.

In the new quasi-spherical polar coordinatesR exp(iθ) = u + iv, equation (2) takes the
following form:[

1

R

∂

∂R
R
∂

∂R
+

1

R2

∂2

∂θ2
+

1

r

(
∂r

∂R

∂

∂R
+

1

R2

∂r

∂θ

∂

∂θ

)]
ψ

= −|F ′(R exp(iθ)|2
[
E1− V1− B2

1r
2 + 2iB1

∂

∂ϕ
+

1

r2

∂2

∂ϕ2

]
ψ (3)

wherer = Im F(R exp(iθ)).
Since conformal mapping conserves a normal to the surface, we are allowed to write

equation (3) on the surfaceR = 1 neglecting derivatives inR. Thus, the three-dimensional
Schr̈odinger operator has been reduced to a two-dimensional operator in(θ, ϕ)-variables.

Due to the conservation of thez-component of the angular momentum, the cyclic
coordinateϕ can be separated in the Fourier series development

ψ(θ, ϕ) =
+∞∑

m=−∞
ψm(θ) exp(imϕ). (4)

Further simplificationx = cosθ results in the ordinary differential equation of the second
order(
1− x2

)d2ψm

dx2
−G1(x)

dψm
dx

+G0(x) ψm = 0 |x| 6 1 |ψm(±1)| <∞. (5)

HereG1(x) = x − (
1 − x2

)
ρ ′(x)ρ−1(x), ρ0ρ(x) = Im F

(
x + i
√

1− x2
)
, ρ0 =

max ImF(exp(iθ)), G0(x) = 8(x)
[
λ − B̃2ρ2(x) − m2ρ−2(x)

]
ρ−2

0 , 8(x) = ∣∣F ′(x +

i
√

1− x2
)∣∣2, λ = Ẽ − 2B̃m, Ẽ = (E1− V1)ρ

2
0, B̃ = B1ρ

2
0.

The low field (B̃ � 1) asymptotic behaviour of the spectrum and eigenfunctions can be
found in the traditional way by the perturbation method. It is much more difficult to suggest
a general approach to indicate a high-field (B̃ � 1) asymptotic behaviour. This is governed
by coefficients of equation (5) or, in other words, by the surface shape. These coefficients
are continuous functions within the interval(1, 1) depending upon the harmonics labelm and
the geometrical parameterξ0 =

∣∣ 1
2ρ0
(z1 − z2)

∣∣2. We will call a surface long asξ0 � 1 and
flattened asξ0� 1.

We consider some specific examples.
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2. A spherical surface

In this case equation (5) is(
1− x2

)d2ψm

dx2
− 2x

dψm
dx

+

[
λ− B̃2

(
1− x2

)− m2

1− x2

]
ψm = 0

|ψm(±1)| <∞ |x| 6 1
(6)

whereρ0 is a radius of a sphere.
This is the well known equation for the oblate angular spheroidal functions [16]. Its

eigenfunctionsψlm(x) are even (odd) functions inx for even (odd)l. They correspond to a
simple discrete spectrum and the eigenvalues are the roots of the transcendental equation

β0 − α0γ1

β1−
α1γ2

β2 − · · · = 0. (7)

In this continuous fraction

αs = 2(n + 1)(n + |m| + 1)

βs = (n + |m|)(n + |m| + 1) + 2B̃(2n + |m| + 1)− λ
γs = 2(n + |m|)B̃

wheren = 2s + sin2(πl/2), s = 0, 1 . . . .
In a low-field limit the asymptotic expansion is

Ẽlm = (l + |m|)(l + |m| + 1) + 2B̃m + O
(
B̃2
)

l = 0, 1 . . . (8)

showing that the problem is asymptotically degenerate.
The leading terms of the high-field asymptotic expansion

1

2B̃
Ẽlm = l + |m| +m + cos2(πl/2) + O

(
B̃−1

)
(9)

display a more complicated type of degeneracy which is analogous to Landau levels. Numerical
calculations in [14, 15] show the relatively high efficiency of this formula. Landau levels
resembling spectrum arise at aboutB̃ ≈ 6 and this tendency progresses with increasing field
strength.

In the high-field limit the eigenfunctions became localized in the vicinity of the poles
x = ±1 and are expressed by the associated Laguerre polynomials

ψlm(x) =
(
x

|x|
)l(

1− x2
)|m|/2

exp
(− 1

2B̃
(
1− x2

))
L(|m|)n

(
B̃
(
1− x2

))
+ O

(
1

B̃

)
x /∈ (−ε, ε) 2n = l − sin2(πl/2).

(10)

We note that equation (8) gives two leading terms of the asymptotic expansion asn� 1.

3. A spheroidal surface

Let a surface be a spheroid whose equation is

z2

a2
+
r2

b2
= 1. (11)

Conformal mapping

z + ir = a − b
2$

+ (a + b)
$

2
$ = R exp(iθ) (12)

is a one-to-one mapping of the unit circleR = 1 onto this ellipse of the(r, z)-plane.
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Equation (5) can be written in the form

d

dx

(
1− x2

)dψm
dx

+

[
λ− B̃2

(
1− x2

)− m2

1− x2

][
ξ
(
1− x2

)
+ 1
]
ψm = 0. (13)

In this equation

|x| 6 1 |ψm(±1)| <∞ ξ = a2b−2 − 1= ξ0 − 1.

According to the Sturm–Liouville theory for problems with singular end-points, this problem
has an infinite discrete spectrumλlm. Its eigenfunctionsψlm(x) havel zeros in the interval
(−1, 1). It follows, that if l is even (odd) integer, then these functions are even (odd).

In order to calculate the spectrum we representψlm(x) as

ψlm(x) = Re
[
ulm(x) exp

(
1
2iB̃x2

√
ξ
)]

(14)

whereulm(x) are eigenfunctions of the problem

d

dx

(
1− x2

)dulm
dx

+ 2iβx
(
1− x2

)dulm
dx

+

[
λ1 + iβ + (χ − 3iβ)x2 − m2

1− x2

]
ulm = 0

|x| 6 1 |ulm(±1)| <∞
λ1 =

(
λ− B̃2

)
(1 + ξ)−m2ξ χ = B̃2(1 + ξ)− λξ β = B̃

√
ξ .

(15)

The functionsulm(x) are found by expanding in the associated Legendre polynomials

ulm(x) =
∞∑
s=0

cnP
|m|
n+|m|(x). (16)

Here indicesn = 2s+sin2(πl/2)are either even or odd integers corresponding to the symmetric
and antisymmetric solutions, respectively.

Substituting this development into the equation (15) yields two recurrence relations
(separately for even and odd integersn)

Ascn−2 + Jscn +Dscn+2 = 0 (17)

where

As = n(n− 1)

4(n + |m| − 1)2 − 1
[χ − iβ(2n + 2|m| − 1)]

Js = χ [2n(2|m| + n + 1) + 2|m| − 1]

(2n + 2|m| + 1)− 4
− (n + |m|)(n + |m| + 1) + λ1

Ds = (n + 2|m| + 2)(n + 2|m| + 1)

4(n + |m| + 2)2 − 1
[χ + iβ(2|m| + 2n + 3)].

The spectrum is determined by equating the infinite determinants of these equations to
zero and is given, therefore, by the roots of the following continued fractions:

0= J0 − A1D0

J1−
A2D1

J2 − · · · . (18)

These continued fractions are real, sinceAsDs−1 take real values.
The sufficient condition for the absence of the eigenfunctions is that a coefficient of the

ψm(x) in equation (13) is a non-positive function within(−1, 1). This condition leads to

λlm > min
06y61

(
B̃2y +m2y−1

)
or

Ẽlm >

{
2B̃(|m| +m) B̃ > |m|
(B̃ +m)2 B̃ < |m|. (19)
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Thus, all eigenvaluesλlm are positive. They are large as one of the conditions (a)l � 1,
(b) |m| � 1, (c) B̃ � 1 andm > 0 is fulfilled. Below we point out leading terms of the
corresponding asymptotic series.

As l � 1, the spectrum can be obtained with methods of the papers [17]. Particularly, the
leading term is given by

Ẽlm = π2(2l + 2|m| + 1)2

16(1 + ξ)E2
(√
ξ/(1 + ξ)

) + 2B̃m + O

(
1

l

)
(20)

whereE(x) is a complete elliptic integral of the second kind.
As |m| � 1, the asymptotic behaviour can be found with stretching the variable

λlm = Ẽlm − 2B̃m = m2 +
2l + 1√

1 + ξ
|m| + O(1). (21)

Eigenfunctions are expressed by Hermite polynomials and they are localized in the equator
zone

ψlm(x) = exp
(−x2

√
λlm

)
Hl
(
xλ

1/4
lm

)
+ O

(
m−2

)
x ∈ (−ε, ε). (22)

The spectrum of the not very long surface(ξ � B̃) is given, in the high-field limit
(B̃ � 1), by an asymptotic formula

λlm = 2νB̃S +m2ξ +
ξ

2S2

(
3ν2 −m2 + 1

)− 1
2

(
ν2 −m2 + 1

)
+ O

(
1

B̃

)
S =

√
1 +

(
ν2 −m2

)
ξ2

B̃2
− νξ
B̃

ν = l + |m| + cos2(πl/2).

(23)

As follows from this expression,λlm are large in the statesm 6 0 as well. Ifν|ξ | � B̃,
then

Ẽlm = 2NB̃ − 1
2(1 + ξ)N(N − 2m) + 1

2(1− ξ) + O

(
ν

B̃

)
N = ν +m. (24)

The corresponding expression of the eigenfunctions is expressed by Laguerre polynomials

ψlm(x) =
(
x

|x|
)l(

1− x2
)|m|/2

exp
(− 1

2

(
1− x2

)
B̃S
)
L|m|n

((
1− x2

)
B̃S
)

+ O

(
1

B̃

)
n = 1

2

(
l − sin2(πl/2)

)
x /∈ (−ε, ε).

(25)

Hence it appears that an energy spectrum resembling the Landau levels is formed in the
high-field limit. Every energy level corresponds to two asymptotically degenerate bound states
labelled(2k,m) and(2k + 1, m). The levels with the same numberN constitute a bunch of
parallel equidistant straight lines. In a givenN -bunch these lines are placed in the order of
increasingm and the upper line is the one withl = 0, 1; m = 1

2(N − 1). As a spheroid is
flattened ((ξ + 1)N � 1), there is an asymptotic coalescence of a bunch into a single line.
Splitting of this Landau level is increasing with growing bunch numbersN as well as spheroid
lengthξ . Unlike the classical Landau problem for a givenB̃ an electron has only a finite family
of bunches. Their number rises as the field strength increases.

A disc of radiusρ0 (a planar circular billiard) is a limiting case of a strongly flattened
spheroid(ξ → −1). In this limit, the values of the eigenfunctions on both sides of the disc
(x > 0 andx < 0) are added and according to equation (25) the antisymmetric eigenfunctions
are cancelled out. Taking into accountρ2

0

(
1− x2

) = r2, we obtain

E1− V1 = 2B1(2n + |m| +m + 1) +
1

ρ2
0

+ O

(
1

B̃ρ2
0

)
ψnm(r) = r |m| exp

(− 1
2r

2B1
)
L|m|n

(
r2B1

)
+ O

(
1

B̃

)
r < ρ0 − ε.
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This turns into the Landau solution whenρ0 = ∞. In the high-magnetic-field limit the
energy spectrum of the electron on a disc coalesces into the straight lines similar to the Landau
levels for an electron on a plane. The states which do not satisfy the restrictionB̃ � n + |m|
may break, however, such an ideal picture. This analytical conclusion confirms the results of
numerical calculations by Nakamura and Thomas [9].

We may suggest that as̃B � ν(ξ0 + 1), the electron states on an arbitrarily shaped convex
surface have the asymptotic behaviourẼlm = B̃η(l +µ(m)), whereη depends on the surface
shape in the close vicinity of the polesx = ±1. This hypothesis is based on a rather obvious
assumption that in the high-magnetic-field limit the leading asymptotic term is predetermined
by flatness of the surface in the vicinity of the rotation axis (where an electron is trapped).
Therefore the requirement of convexness is, probably, too restricting.

For more detailed information on the spectrum of an electron, confined to a spheroid we
proceed to treat it as a function of the parameters.

Letψlm(x) obey equation (13) andζl1m1(x) be an eigenfunction of the same equation but
with the eigenvalueλl1m1, B̃ = B̃1, ξ = ξ1. As a starting point we use the identity

(ξ − ξ1)

∫ 1

−1

[
λl1m1 − B̃2

1

(
1− x2

)− m2

1− x2

]
ψlm(x) ζl1m1(x)

(
1− x2

)
dx

+
∫ 1

−1

[
1λ−1B̃(1− x2

)− 1m

1− x2

]
ψlm(x) ζl1m1(x)

[
1 + ξ

(
1− x2

)]
dx

= −
∫ 1

−1
d
[(

1− x2
)
(ζ ′l1m1

(x) ψlm(x)− ζl1m1(x) ψ
′
lm(x))

] = 0

where1λ = λl1m1 − λlm,1B̃ = B̃2
1 − B̃2,1m = m2

1 −m2.
Let us now work out in detail this identity for various relations of the parameters.

(a) B̃1 = B̃, ξ1 = ξ ,m1 = m, l1 6= l. We obtain the orthogonality condition∫ 1

−1

[
1 + ξ

(
1− x2

)]
ψlm(x)ψl1m(x) dx = 0. (26)

(b) B̃1 = B̃, ξ = ξ1,m1 6= m, Ẽl1m1 = Ẽlm. The identity yields the degeneracy condition∫ 1

−1

(
m1 +m

1− x2
+ 2B̃

)
ψlm(x)ψl1m1(x)

[
1 + ξ

(
1− x2

)]
dx = 0. (27)

(c) ξ1 = ξ ,m1 = m, l1 = l, B̃1→ B̃. As a result of dividing by1B̃, we have in the limit the
following ordinary differential equation characterizing dependence of the spectrum upon
the magnetic field:

‖ψlm(x)‖2 dλlm
d(B̃2)

=
∫ 1

−1

(
1− x2

)
ψ2
lm(x)

[
1 + ξ

(
1− x2

)]
dx (28)

‖ψlm(x)‖2 dẼlm

dB̃
= 2

∫ 1

−1

[
B̃
(
1− x2

)
+m

]
ψ2
lm(x)

[
1 + ξ

(
1− x2

)]
dx (29)

where

‖ψlm(x)‖ =
[ ∫ 1

−1

[
1 + ξ

(
1− x2

)]
ψ2
lm(x) dx

]1/2

is the norm of the eigenfunctionψlm(x).
It follows from these equations

2m(B̃ − B̃1) < Ẽlm(B̃)− Ẽlm(B̃1) < (B̃ − B̃1)(B̃ + B̃1 + 2m)

B̃2
1Ẽlm(B̃)− B̃2Ẽlm(B̃1) < 2mB̃B̃1(B̃1− B̃).



Electron on an arbitrary surface of revolution in a magnetic field 1513

The eigenvaluesλlm are monotonically increasing functions ofB̃. The energy levels̃Elm
are monotonically increasing functions ofB̃ whenm > 0. Asm < 0, the energy levels
are monotonically decreasing in the interval 06 B̃ 6 −m and are increasing provided
B̃ � −m. They have extrema only in some fairly wide zone(−m, B̃0).
The obtained differential equations can be considered as relationships determining the
average squared deviation of the electron from the equatorx = 0 in the(l, m)-bound state

x̄2 = 1− dλlm

d
(
B̃2
) = 1 +

m

B̃
− 1

2B̃

dẼlm

dB̃
. (30)

The average electron position is thus easily found by differentiating the dispersion
relations.

(d) B̃1 = B̃, ξ1 = ξ , l1 = l,m1→ m. We admit here that the parameterm is an arbitrary real
number and derive the ordinary differential equations

‖ψlm(x)‖2 dλlm
d
(
m2
) = ∫ 1

−1

1 + ξ
(
1− x2

)
1− x2

ψ2
lm(x) dx (31)

‖ψlm(x)‖2 dẼlm
dm
= 2

∫ 1

−1

B̃
(
1− x2

)
+m

1− x2
ψ2
lm(x)

[
1 + ξ

(
1− x2

)]
dx. (32)

One can see that eigenvalues monotonically increase in|m| and

0< λlm − λlm1 < m2 −m2
1

λlm

λlm1

<
m2

m2
1

(|m| > |m1| 6= 0). (33)

Energy levelsẼlm constitute under magnetic field̃B a monotonically increasing sequence
asm > 0. Whenm < 0, their behaviour is much more intricate. They are only known to
be monotonically decreasing asm 6 −B̃ or else asl � −m, B̃.

(e) B̃1 = B̃,m1 = m, l1 = l, ξ1→ ξ . In this limit we obtain the ordinary differential equation
showing influence of the spheroid geometry parameter on the quantum-mechanical
spectrum

‖ψlm(x)‖2 dẼlm
dξ
= −

∫ 1

−1

[
Ẽlm −

(
B̃
√

1− x2 +
m√

1− x2

)2]
ψ2
lm(x)

(
1− x2

)
dx. (34)

We observe a lowering of the energy levels as the spheroid becomes longer.
The case of a ‘long’ spheroid can be treated by asymptotic methods. For example, as√
ξ � B̃ + |m| + 1, leading terms of the corresponding asymptotic expansion have the

structure

Ẽlm = (B̃ +m)2 +
w(B̃,m, l)√

ξ
+ O

(
1

ξ

)
w(B̃,m, l) > 0. (35)

Under the samem two successive energy levels nearly do not differ. This condensing is
a process of a continuous spectrum arising occupying the regionẼ > (B̃ +m)2. As one
might expect, such a limiting continuous spectrum is the spectrum of an infinitely long
cylinder. The mentioned condensing is absent in the states with large labelsm because
equation (21) remains valid.

To conclude we have studied analytically the energy spectrum of an electron confined to
an arbitrary surface of revolution in an external magnetic field, parallel to the symmetry axis.
Via conformal mapping the problem is reduced to the problem on the surface of a sphere. The
cases of a sphere and a spheroid are considered in detail and the dependence on parameters
is discussed. In particular, a Landau-levels-like regular structure of the energy spectrum is
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observed in a high-magnetic-field limit. Every energy level corresponds to two asymptotically
degenerate bound states. The levels with the same number constitute a bunch of parallel
straight lines. The conditions are found when there is an asymptotic coalescence of a bunch
into a single line. Unlike the classical Landau levels problem an electron has only a finite
family of bunches. Their number rises as the field strength increases.

The dependence of the eigenfunctions and eigenvalues on the harmonics number is studied.
We have obtained that the wavefunctions, corresponding to high harmonics are localized in the
equator zone. In the high-field limit, on the other hand, they are concentrated near the poles.

Solutions of the Landau problem for a plane, problems of a planar circular billiard and an
infinite circular cylinder are obtained as limits.

Our analytical results confirm the numerical calculations existing in the literature. With
some modifications these results could be easily generalized for the anisotropic (orthotropic)
case.
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