IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Electron on an arbitrary surface of revolution in a magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 1507
(http://iopscience.iop.org/0305-4470/32/8/016)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.118
The article was downloaded on 02/06/2010 at 08:00

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. GerB2(1999) 1507-1514. Printed in the UK PIl: S0305-4470(99)95841-9

Electron on an arbitrary surface of revolution in a magnetic
field

P Malits ard | D Vagner

Grenoble High Magnetic Field Laboratory, Max-Planck-Institut Festlorperforschung and
Centre Nationale de la Recherche Scientifique, BP 166, 38042 Grenoble Cedex 09, France
and

PERI, Physics and Engineering Research Institute, School of Engineering at Ruppin IHE,
Coventry University Programme in Israel, Emek Hefer, 40250, Israel

Received 13 July 1998, in final form 25 November 1998

Abstract. The energy spectrum of an electron confined to a mesoscopic surface of revolution in
an external magnetic field, parallel to the symmetry axis, is studied analytically. Via conformal
mapping the problem is reduced to the problem on the surface of a sphere. Cases of the sphere
and the spheroid are considered in detail and the dependence on parameters is discussed. In the
high magnetic field limit we observe a Landau level-like regular structure of the electron energy
spectrum.

1. Introduction

The quantum mechanics of non-interacting electrons in a magnetic field is a rich subject
both mathematically and physically. Initially attention was attracted to the problem of an
electron in a parabolic potential [1] and on the infinite plane [2, 3]. Later the solutions for an
electron in mesoscopic rings and cylinders [4, 5] were studied, motivating the observation [6]
of the topologically nontrivial Aharonov—Bohm [7, 8] like effects. The electron spectrum in
an oval-shaped stadium was studied in [9] and it was shown there that this model is relevant
to the notion of chaos in the level statistics and related thermodynamics of such systems. The
energy spectrum of the two-dimensional interacting electrons under a strong magnetic field was
obtained in [10, 11], and generalized for the case when a one-dimensional periodic potential
is applied in [12, 13].

Recently, there has been growing interest in electrons confined to a three-dimensional
surface with a magnetic field applied along one of the symmetry axes. The case of a sphere
was studied in [14,15]. The energy spectrum was calculated there and the thermodynamic
properties, such as magnetization and susceptibility were studied. Real systems rarely have
a purely spherical shape, and it is desirable to know the electron spectrum for a surface of
more general shapes. Here we consider an electron on an arbitrary surface of revolution
placed in a uniform magnetic field. Our goal is to investigate the influence of the geometrical
characteristics on the quantum-mechanical spectrum of the electron.

Consider the case of a single electron confined to the surfacg (z), where(r, ¢, z) are
the cylindrical coordinates. We assume the surface to be smooth, closed and to cremdshe
only at two points, = zx, k = 1, 2. The uniform magnetic fiel@ points in thez-direction.
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The problem is described by the Hamiltonian
1 e 17
H=—|hV—-A| +V Q)
2m c

where, for simplicity, we ignore spin-dependent term4. = B(—y, x, 0)/2 is the vector
potential in the symmetric gauge [3k, y) are the Cartesian coordinates. This Hamiltonian
leads to the following Sclidinger equation on the surface:

9
(A + 2|B1@ — B%r? — V]_)I/f =—FE1y 2)

whereE; = (2m/h?)E, By = eB/2ch, V1 = (2m/R%)V.

We introduce new orthogonal coordinates py ir = F(u + iv), where the function
F (u +iv) maps conformally the domain of thie, v)-plane containing the unit circle onto the
domain of the(r, z)-plane containing the closed curve= + f (z) and this curve is the image
of the circleu? + v? = 1 with the arcw > 0 corresponding te > 0.

In the new quasi-spherical polar coordinafesxp(if) = u + iv, equation (2) takes the
following form:

19 9 10%> 1f/or 3 13rad
Z—R—t—=—+|——+=——|¥
ROR OR R2060%2 r\OROR R29030
/ i0Y(2 22, 5p 0 192
= —|F'(Rexpif)|*| Ey — V1 — Bir“+2iBi— + - — (¢ 3)
dp 12 9¢?
wherer = Im F (R exp(if)).
Since conformal mapping conserves a normal to the surface, we are allowed to write
equation (3) on the surfac® = 1 neglecting derivatives i®. Thus, the three-dimensional
Schibdinger operator has been reduced to a two-dimensional operdtargmvariables.

Due to the conservation of the-component of the angular momentum, the cyclic
coordinatep can be separated in the Fourier series development

YO, 0) =Y Yn®) explime). 4
Further simplificationc = cosé results in the ordinary differential equation of the second
order

2
(1- xz)dd% - Gl(x)% +Go(x) Y =0 x| <1 [¥m (£D)] < o0. (5)

Here Gi(x) = x — (1 — xz)p’(x)p’l(x), pop(x) = Im F(x + i\/l—xz), po =
max ImF (exp(i6)), Go(x) = ®(x)[r — B2p%(x) — m2p~2(x)]pg %, ®(x) = |F/(x +
ivI—x2)°,a = E —2Bm, E = (E1 — V1)p2, B = B1p2.

The low field (8 « 1) asymptotic behaviour of the spectrum and eigenfunctions can be
found in the traditional way by the perturbation method. It is much more difficult to suggest
a general approach to indicate a high-fieli ¥ 1) asymptotic behaviour. This is governed
by coefficients of equation (5) or, in other words, by the surface shape. These coefficients
are continuous functions within the intervdl 1) depending upon the harmonics labebnd
the geometrical parametég = \2—/130(zl — z2)\2. We will call a surface long a& > 1 and
flattened a%y <« 1.

We consider some specific examples.
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2. A spherical surface

In this case equation (5) is

&2y, Ay, - m?

2 2 2

(1—x)dx2 —Zx—dx +|:)\.—B(l—x)—m:|'¢fm—o (6)
[ (D) < o0 x] <1

wherepg is a radius of a sphere.

This is the well known equation for the oblate angular spheroidal functions [16]. Its
eigenfunctions/y,, (x) are even (odd) functions in for even (odd). They correspond to a
simple discrete spectrum and the eigenvalues are the roots of the transcendental equation

Bo — Qoy1 o1)2 = 0. @

In this continuous fraction

ay=2(n+1(n+|ml+1)
Bs = (n+|m|)(n+|m|+1)+2B2n +|m|+1) — A
¥s = 2(n +|m|)B

wheren = 25 +sirf(71/2),s =0,1....
In a low-field limit the asymptotic expansion is

Ep = (I +|m|)(I +|m| + 1) + 2Bm + O(B?) 1=0,1... (8)

showing that the problem is asymptotically degenerate.
The leading terms of the high-field asymptotic expansion

%E,m — [ +|m| +m+cod(xl/2) + O(B™) )

display amore complicated type of degeneracy which is analogous to Landau levels. Numerical
calculations in [14, 15] show the relatively high efficiency of this formula. Landau levels
resembling spectrum arise at abdute 6 and this tendency progresses with increasing field
strength.

In the high-field limit the eigenfunctions became localized in the vicinity of the poles
x = 1 and are expressed by the associated Laguerre polynomials

: m D m) (R 1
i) = () (0= x2) " exp(-3B(1 - 521 (B(1 - x7) +0f 3 ) (10)
x ¢ (—e,¢) 2n =1 —sir(wl/2).

We note that equation (8) gives two leading terms of the asymptotic expansios-és

3. A spheroidal surface

Let a surface be a spheroid whose equation is
Z2 r2

PN E

a? b2

Conformal mapping

—1 (11)

ct+ir =2 +ta+bh)Z w = Rexp(if) (12)
o 2

is a one-to-one mapping of the unit cirde= 1 onto this ellipse of thér, z)-plane.
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Equation (5) can be written in the form

d " - 2
1=+ (;i [A—Bz(l—xz)—%][E(l—x2)+l]wm=O. (13)
In this equation
X[ <1 [YwED]<oo  E=d’bP-1=§&-1

According to the Sturm—Liouville theory for problems with singular end-points, this problem
has an infinite discrete spectruy,. Its eigenfunctions/;,,(x) havel zeros in the interval
(=1, 1). It follows, that if/ is even (odd) integer, then these functions are even (odd).

In order to calculate the spectrum we represeptix) as

Yim (x) = Re[up (x) exp(3iBx?/€ )] (14)
whereu;,, (x) are eigenfunctions of the problem
2
d(l )dﬂ+2|,3x( )dﬂ+ da+i+ (= 3if)x? — —— |um =0
dx dx dx 1—x2 (15)
x| <1 [uim (£1)] < 00

a=(—B)L+& -m?  x=BA+&)-r&  B=BE
The functionsy;,,, (x) are found by expanding in the associated Legendre polynomials

iy (x) = Z Cn Pt (). (16)

Hereindices = 2s +S|r12(nl/2) are either even or odd integers corresponding to the symmetric
and antisymmetric solutions, respectively.

Substituting this development into the equation (15) yields two recurrence relations
(separately for even and odd integejs

Ascp2+ Jscp + Dycpa2 =0 (17)

where
nn—1)
T An+m —12—1

The spectrum is determined by equating the infinite determinants of these equations to
zero and is given, therefore, by the roots of the following continued fractions:
A1Do A2Dy
Ji— Jp—--

These continued fractions are real, sinceé,_; take real values.

The sufficient condition for the absence of the eigenfunctions is that a coefficient of the
¥, (x) in equation (13) is a non-positive function withjr 1, 1). This condition leads to

[x —iB(2n+2im| — 1]

(18)

A > Mmin (B%y +m2y~1
Im 0<ygl( y+m?y™)
or

2 |ml| (19)

o5 T

B {2B(|m| +m)

(B +m)? < |m|.
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Thus, all eigenvalues;,, are positive. They are large as one of the conditions (&)1,
(b) Im| > 1, (c) B > 1 andm > 0 is fulfilled. Below we point out leading terms of the
corresponding asymptotic series.

As! > 1, the spectrum can be obtained with methods of the papers [17]. Particularly, the
leading term is given by

. 7220 + 2\m| + 1)2 N <1)
Eim = +2Bm +0[ = (20)
" T 16 +6)E(VE/T D)) I
whereE (x) is a complete elliptic integral of the second kind.
As |m| > 1, the asymptotic behaviour can be found with stretching the variable

+1
+0O(1). 21
g+ oW (21)
Eigenfunctions are expressed by Hermite polynomials and they are localized in the equator
zone

MAMm = Elm — Zf?m = m2+

Y (x) = exp(—xzw/k,m )H; (x)»ll,ff) + O(m_z) x € (—¢,e¢). (22)
_ The spectrum of the not very long surfate < B) is given, in the high-field limit
(B > 1), by an asymptotic formula
. 1
Aim = 2vBS +m%E + %(31}2 —m?+ 1) - %(v2 —m?+ 1) + O<7)
23
(v2—m?)g2 g (23)
S=1+—2 — 2 v =1+|m|+cog(nl/2).
B2 B
As follows from this expression,,, are large in the states < 0 as well. Ifv|§]| « B,
then
Eim =2N1§—%(1+§)N(N—2m)+%(1—§)+0(%> N =v+m. (24)
The corresponding expression of the eigenfunctions is expressed by Laguerre polynomials

a0 = () @) o s BB B vo(2) g

x|
n=1(l—sinf(rl/2)) x & (—¢,¢).

Hence it appears that an energy spectrum resembling the Landau levels is formed in the
high-field limit. Every energy level corresponds to two asymptotically degenerate bound states
labelled(2k, m) and(2k + 1, m). The levels with the same numb&a’ constitute a bunch of
parallel equidistant straight lines. In a givahbunch these lines are placed in the order of
increasingn and the upper line is the one with= 0,1; m = %(N —1). As a spheroid is
flattened (¢ + )N « 1), there is an asymptotic coalescence of a bunch into a single line.
Splitting of this Landau level is increasing with growing bunch numbées well as spheroid
lengthé. Unlike the classical Landau problem for a givBan electron has only a finite family
of bunches. Their number rises as the field strength increases.

A disc of radiuspg (a planar circular billiard) is a limiting case of a strongly flattened
spheroid(¢ — —1). In this limit, the values of the eigenfunctions on both sides of the disc
(x > 0andx < 0) are added and according to equation (25) the antisymmetric eigenfunctions
are cancelled out. Taking into accoysgi(1 — x2) = r2, we obtain

1 1
Ei— Vi =2B1(2n + |m)| +m+1)+—2 +O<~—>
2
0 Bpg
1
Yum (r) = rim exp(_%rzBl)leml(rzBl) * O(E) r<po—é¢.
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This turns into the Landau solution whep = oco. In the high-magnetic-field limit the
energy spectrum of the electron on a disc coalesces into the straight lines similar to the Landau
levels for an electron on a plane. The states which do not satisfy the restiictiom + |m|
may break, however, such an ideal picture. This analytical conclusion confirms the results of
numerical calculations by Nakamura and Thomas [9].

We may suggest that @>> v(&, + 1), the electron states on an arbitrarily shaped convex
surface have the asymptotic behavidiy, = Bn(l + u(m)), wheren depends on the surface
shape in the close vicinity of the poles= +1. This hypothesis is based on a rather obvious
assumption that in the high-magnetic-field limit the leading asymptotic term is predetermined
by flatness of the surface in the vicinity of the rotation axis (where an electron is trapped).
Therefore the requirement of convexness is, probably, too restricting.

For more detailed information on the spectrum of an electron, confined to a spheroid we
proceed to treat it as a function of the parameters.

Let v, (x) obey equation (13) angl,,,, (x) be an eigenfunction of the same equation but
with the eigenvalue,,,,,, B = By, &£ = &. As a starting point we use the identity

m

1 2
(S - gl)/ I:)"llml - sz_(l - -x2) - ﬁ]wlm(x) ;Ilml(X)(l — xz) dx
1 —

1 - 2 Am 2
+/ I:A)\ — AB(l—X ) - —j|¢lm(x) {llml(-x)[l-'_s(l_‘x )] d'x

1 1-— xz
1
= —f d[(1 = %) €y ) Yim () = Ly, () Y1, (x))] = O
-1
whereAx = Ay, — Aim, AB = B2 — B2, Am = m? — m?.
Let us now work out in detail this identity for various relations of the parameters.
(@) B1 = B, & = &, m1 = m, I, # . We obtain the orthogonality condition

1

/ . [1+&(1 = x)] Ym (x) Y (x) dx = 0. (26)

(b) By = B, & = &, my # m, Ep,,, = E;,,. The identity yields the degeneracy condition
1

/1 <’;ll_+x”; + 2[;) Wi () Yoy ()1 +E(1 = x2)] dx = 0. 27)

(c) & = &,my =m,ly =1, By - B. As aresult of dividing byA B, we have in the limit the
following ordinary differential equation characterizing dependence of the spectrum upon
the magnetic field:

A !
11 () 12 & élz) = 1 ) (1-x?) y2,@[1+&(1—x%)]dx (28)
2dElm tos 2 2 2
im0 3 - 2/1 [B(1—x%) +m] vy, (0)[1+&(1—x?)]dx (29)
where

1 1/2
19 (Ol = [ f l[1+s(1—x2)]w,3n(x> dx}
is the norm of the eigenfunctiof,, (x).
It follows from these equations
2m(B — By) < Ejpy(B) — Eyn(By) < (B — B1)(B + By +2m)
BfEy,(B) — B?Ey,,(B1) < 2nBBy(B1 — B).
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The eigenvalues;,, are monotonically increasing functions Bf The energy level&),,

are monotonically increasing functions Bfwhenm > 0. Asm < 0, the energy levels

are monotonically decreasing in the intervakOB < —m and are increasing provided

B > —m. They have extrema only in some fairly wide zaren, Bo).

The obtained differential equations can be considered as relationships determining the
average squared deviation of the electron from the equatof in the(/, m)-bound state

dis,, 1 dE,
2_q_ Gm oy om LGB (30)
d(B?) B 2B dB
The average electron position is thus easily found by differentiating the dispersion

relations.
(d) By = B, &1 = &,11 = 1,m; — m. We admit here that the parame#teris an arbitrary real
number and derive the ordinary differential equations

dAsm 11+g(1—x2
||1//1m(x)||2d(niz) = /;1 i(_xzx )szm(X) dx (31)
1 E(l—xz)

dEm +
e =2 [ SE S w1 e (- 1)) . 32)

One can see that eigenvalues monotonically increage|iand

)\.1 m2
0 < Aim — himy <m? —m3 2= (Jm| > |m1| # 0). (33)

Energy levelsE,,, constitute under magnetic fiekla monotonically increasing sequence
asm > 0. Whenm < 0, their behaviour is much more intricate. They are only known to
be monotonically decreasing as< —B or else as > —m, B.

(e) By = B,m1=m,l, =1,& — &. Inthis limitwe obtain the ordinary differential equation
showing influence of the spheroid geometry parameter on the quantum-mechanical
spectrum

ZdElm r. ~ m 2 2 2
I PG = _/_1 [E,m - (B 1- 22+ ﬁ) }p,m(x)(l—x Jdv. (34)
We observe a lowering of the energy levels as the spheroid becomes longer.
The case of a ‘long’ spheroid can be treated by asymptotic methods. For example, as
JVE > B+ |m| + 1, leading terms of the corresponding asymptotic expansion have the
structure

M + O(l) w(B,m,l) > 0. (35)
VE £

Under the same: two successive energy levels nearly do not differ. This condensing is

a process of a continuous spectrum arising occupying the régisn(B + m)2. As one

might expect, such a limiting continuous spectrum is the spectrum of an infinitely long

cylinder. The mentioned condensing is absent in the states with large tatrdsause

equation (21) remains valid.

Ep = (B+m)*+

To conclude we have studied analytically the energy spectrum of an electron confined to
an arbitrary surface of revolution in an external magnetic field, parallel to the symmetry axis.
Via conformal mapping the problem is reduced to the problem on the surface of a sphere. The
cases of a sphere and a spheroid are considered in detail and the dependence on parameters
is discussed. In particular, a Landau-levels-like regular structure of the energy spectrum is
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observed in a high-magnetic-field limit. Every energy level corresponds to two asymptotically
degenerate bound states. The levels with the same number constitute a bunch of parallel
straight lines. The conditions are found when there is an asymptotic coalescence of a bunch
into a single line. Unlike the classical Landau levels problem an electron has only a finite
family of bunches. Their number rises as the field strength increases.

The dependence ofthe eigenfunctions and eigenvalues on the harmonics number is studied.
We have obtained that the wavefunctions, corresponding to high harmonics are localized in the
equator zone. In the high-field limit, on the other hand, they are concentrated near the poles.

Solutions of the Landau problem for a plane, problems of a planar circular billiard and an
infinite circular cylinder are obtained as limits.

Our analytical results confirm the numerical calculations existing in the literature. With
some modifications these results could be easily generalized for the anisotropic (orthotropic)
case.
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